题目内容
11.将函数y=sin2x的图象向右平移$\frac{π}{4}$个单位,再向上平移一个单位,所得函数图象对应的解析式为( )A. | y=2sin2x | B. | y=2cos2x | C. | y=sin(2x-$\frac{π}{4}$)+1 | D. | y=-cos2x |
分析 由条件利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:将函数y=sin2x的图象向右平移$\frac{π}{4}$个单位,可得函数y=sin2(x-$\frac{π}{4}$)=-cos2x 的图象,
再向上平移一个单位,所得函数图象对应的解析式y=-cos2x+1=2sin2x,
故选:A.
点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
1.若随机变量X~N(1,4),则P(1<X≤3)=( )
(附:若随机变量X~N(μ,σ2)(σ>0),则P(μ-σ<X≤(μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544.
(附:若随机变量X~N(μ,σ2)(σ>0),则P(μ-σ<X≤(μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544.
A. | 0.6826 | B. | 0.3413 | C. | 0.9544 | D. | 0.4772 |
6.下列结论正确的是( )
A. | 若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$ | |
B. | “若θ=$\frac{π}{3}$,则cosθ=$\frac{1}{2}$”的否命题为“若θ≠$\frac{π}{3}$,则cosθ≠$\frac{1}{2}$” | |
C. | 已知向量$\overrightarrow{a}$、$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为钝角”的充要条件是“$\overrightarrow{a}$$•\overrightarrow{b}$<0” | |
D. | 若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0 |
3.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体得体积是( )cm2.
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | 2 | D. | 4 |