题目内容
16.已知z=2x+y,其中实数x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z的最大值是最小值的4倍,则a的值是( )A. | $\frac{2}{11}$ | B. | $\frac{1}{4}$ | C. | 4 | D. | $\frac{11}{2}$ |
分析 作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y的最大值是最小值的4倍,建立方程关系,即可得到结论.
解答 解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线的截距最大,
此时z最大,
由 $\left\{\begin{array}{l}{x+y=2}\\{y=x}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
即A(1,1),此时z=2×1+1=3,
当直线y=-2x+z经过点B时,直线的截距最小,
此时z最小,
由 $\left\{\begin{array}{l}{x=a}\\{y=x}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=a}\\{y=a}\end{array}\right.$,
即B(a,a),此时z=2×a+a=3a,
∵目标函数z=2x+y的最大值是最小值的4倍,
∴3=4×3a,即a=$\frac{1}{4}$,
故选:B.
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
8.某几何体的三视图如图所示,其正视图中的曲线部分为半圆,则该几何体的表面积为( )
A. | 10+6$\sqrt{2}$+4π(cm2) | B. | 16+6$\sqrt{2}$+4π(cm2) | C. | 12+4π(cm2) | D. | 22+4π(cm2) |
5.在平行四边形ABCD中,若|$\overrightarrow{AB}$+$\overrightarrow{AD}$|=|$\overrightarrow{DA}$+$\overrightarrow{DC}$|,则四边形ABCD为( )
A. | 菱形 | B. | 矩形 | C. | 正方形 | D. | 以上都不对 |
6.函数f(x)=$\left\{\begin{array}{l}1-{5^{-x}},(x≥0)\\{5^x}-1.(x<0)\end{array}$,则下列结论正确的是( )
A. | 函数f(x)在其定义域内为增函数且是奇函数 | |
B. | 函数f(x)在其定义域内为增函数且是偶函数 | |
C. | 函数f(x)在其定义域内为减函数且是奇函数 | |
D. | 函数f(x)在其定义域内为将函数且是偶函数 |