题目内容

已知函数f(x)=ax+b,则a+2b>0是使ax+b>0在区间[0,1]上恒成立的


  1. A.
    充分非必要条件
  2. B.
    必要非充分条件
  3. C.
    充要条件
  4. D.
    既不充分又不必要条件
B
解析:由f(x)=ax+b>0在x∈[0,1]上恒成立,则f(0)=b>0,f(1)=a+b>0,两式相加得a+2b>0成立.∴必要.而当a=6,b=-2时,a+2b=2>0成立,而此时f(0)=b=-2<0,∴不充分.故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网