题目内容
已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1)。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
解:(1)由题意知,椭圆离心率为,
则,
又,所以可解得,
所以c2=4,
所以椭圆的标准方程为;
所以椭圆的焦点坐标为(±2,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,
所以该双曲线的标准方程为。
(2)设点P(x0,y0),则,
所以,
又点P(x0,y0)在双曲线上,所以有,
即,所以;
(3)假设存在实数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立,
则由(2)知k1·k2=1,所以设直线AB的方程为y=k(x+2),
则直线CD的方程为,
由方程组,消y得:,
设,
则由韦达定理得:,
所以,
同理可得,
又因为|AB|+|CD|=λ|AB|·|CD|,
所以有,
所以存在常数,使得|AB|+|CD|=λ|AB|·|CD|恒成立.
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|