题目内容

已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1)。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

解:(1)由题意知,椭圆离心率为

,所以可解得
所以c2=4,
所以椭圆的标准方程为
所以椭圆的焦点坐标为(±2,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,
所以该双曲线的标准方程为
(2)设点P(x0,y0),则
所以
又点P(x0,y0)在双曲线上,所以有
,所以
(3)假设存在实数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立,
则由(2)知k1·k2=1,所以设直线AB的方程为y=k(x+2),
则直线CD的方程为
由方程组,消y得:

则由韦达定理得:
所以
同理可得
又因为|AB|+|CD|=λ|AB|·|CD|,
所以有
所以存在常数,使得|AB|+|CD|=λ|AB|·|CD|恒成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网