题目内容
7.在如图所示的平面中,点C为半圆的直径AB延长线上的一点,AB=BC=2,过动点P作半圆的切线PQ,若PC=$\sqrt{2}$PQ,则△PAC的面积的最大值为4$\sqrt{5}$.分析 以AB所在直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系,利用两点间距离公式推导出点P的轨迹方程是以(-3,0)为圆心,以r=2$\sqrt{5}$为半径的圆,由此能求出△PAC的面积的最大值.
解答 解:以AB所在直线为x轴,以AB的垂直平分线为y轴,
建立平面直角坐标系,
∵AB=BC=2,∴C(3,0),
设P(x,y),
∵过动点P作半圆的切线PQ,PC=$\sqrt{2}$PQ,
∴$\sqrt{(x-3)^{2}+{y}^{2}}$=$\sqrt{2}$•$\sqrt{{x}^{2}+{y}^{2}-1}$,
整理,得x2+y2+6x-11=0,
∴点P的轨迹方程是以(-3,0)为圆心,以r=2$\sqrt{5}$为半径的圆,
∴当点P在直线x=-3上时,△PAC的面积的最大,
∴(S△PAC)max=$\frac{1}{2}×4×2\sqrt{5}$=4$\sqrt{5}$.
故答案为:4$\sqrt{5}$.
点评 本题考查三角形面积的最大值的求法,是中档题,解题时要认真审题,注意两点间距离公式的合理运用.
练习册系列答案
相关题目
17.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\sqrt{3}$,则双曲线的渐近线方程为( )
A. | $y=±\frac{{\sqrt{2}}}{2}x$ | B. | $y=±\sqrt{2}x$ | C. | y=±2x | D. | $y=±\frac{1}{2}x$ |
15.函数y=f(x)满足对任意x1,x2∈[0,2](x1≠x2),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0,且函数f(x+2)是偶函数,则下列结论成立的是( )
A. | f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$) | B. | f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$) | C. | f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1) | D. | f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$) |