题目内容
如图,A,B,C三个观察哨,A在B的正南,两地相距6km,C在B的北偏东60°,两地相距4km.在某一时刻,A观察哨发现某种信号,并知道该信号的传播速度为1km/s;4秒后B,C两个观察哨同时发现这种信号。在以过A,B两点的直线为y轴,以线段AB的垂直平分线为x轴的平面直角坐标系中,指出发了这种信号的地点P的坐标。
解: 设点P的坐标为(x ,y),则A(0 ,-3), B(0,3), C(
).
因为|PB|=|PC|,所以点P在BC的中垂线上.
因为
,BC中点D(
),
所以直线PD方程为
①。
又因为|PB|-|PA|=4,
所以点P必在以A,B为焦点的双曲线的下支上,双曲线方程为
②
联立①②,解得y=
,或y=
(舍去)
所以x=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628415405.png)
所以P点坐标为(
)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628134505.png)
因为|PB|=|PC|,所以点P在BC的中垂线上.
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628150673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628166438.png)
所以直线PD方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628197755.png)
又因为|PB|-|PA|=4,
所以点P必在以A,B为焦点的双曲线的下支上,双曲线方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628212943.png)
联立①②,解得y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628228319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628400431.png)
所以x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628415405.png)
所以P点坐标为(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193628431539.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目