题目内容
已知函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),函数f(x)的最小值为y0,且y0∈[x1,x2),则函数y=f(f(x))的零点个数是( )
A.3 | B.4 | C.3或4 | D.2或3 |
如图所示,
∵函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),∴△=b2-4ac>0.
由f(f(x))=af2(x)+bf(x)+c=0,∵△>0,
∴f(x)=x1或f(x)=x2.
∵函数f(x)的最小值为y0,且y0∈[x1,x2),画出直线y=x2.y=x1.
则直线y=x2.与y=f(x)必有两个交点,此时f(x)=x2.有2个实数根,即函数y=f(f(x))由两个零点.
直线y=x1与y=f(x)可能有一个交点或无交点,此时f(x)=x1有一个实数根x=-
或无实数根.
综上可知:函数y=f(f(x))的零点由2个或3个.
故选D.
∵函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),∴△=b2-4ac>0.
由f(f(x))=af2(x)+bf(x)+c=0,∵△>0,
∴f(x)=x1或f(x)=x2.
∵函数f(x)的最小值为y0,且y0∈[x1,x2),画出直线y=x2.y=x1.
则直线y=x2.与y=f(x)必有两个交点,此时f(x)=x2.有2个实数根,即函数y=f(f(x))由两个零点.
直线y=x1与y=f(x)可能有一个交点或无交点,此时f(x)=x1有一个实数根x=-
b |
2a |
综上可知:函数y=f(f(x))的零点由2个或3个.
故选D.
练习册系列答案
相关题目