题目内容
在平面直角坐标系
中,已知椭圆
:
的离心率
,且椭圆C上一点
到点Q
的距离最大值为4,过点
的直线交椭圆
于点![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040593427.png)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040484465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040484319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240405001018.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040515564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040531362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040546417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040562610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040484319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040593427.png)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040609633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040624537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040624271.png)
(1)
;(2)
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040671545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040640636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040656564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040671545.png)
试题分析:本题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识,考查用代数方法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,先利用离心率列出表达式找到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040687283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040702299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040718357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040734333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040718357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040749666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040765395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040780425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040796478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040812396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040827697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040843403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040843289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040858522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040874267.png)
试题解析:(Ⅰ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040890910.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040905546.png)
则椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040921813.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040936696.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040936609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240409521774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240409681481.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040983370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040999502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041014673.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041030419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040780425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040640636.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240410771108.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041077655.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240410921130.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240411081091.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240411391175.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041155517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240411551202.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240411701195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240411861209.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240412021827.png)
由点P在椭圆上,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240412171318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041233797.png)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240412481060.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240412641147.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041280429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041280397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240412951658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041311952.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041342822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041358680.png)
由①,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240413731026.png)
联立②,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024041389548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040656564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024040671545.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目