题目内容
已知函数.
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)求使f(x)≥2的x的取值范围
解:(Ⅰ)∵f(x)=sin(2x+)+sin(2x-
)+2cos2x
=sin2xcos+cos2xsin
+sin2xcos
-cos2xsin
+cos2x+1
=sin2x+cos2x+1
= 2sin(2x+)+1
∴f(x)max=2+1=3
(Ⅱ)∵f(x)≥2
∴ 2sin(2x+)+1≥2
∴sin(2x+)≥
∴ 2kx+≤2x+
≤2k
+
k≤x≤k
+
(k∈Z)
∴使f(x) ≥2的x的取值范围是{x|k≤x≤k
+
,k∈Z}
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201307/2/6d4ddcc7.png)
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|