题目内容
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.(Ⅰ)用xn表示xn+1;
(Ⅱ)若x1=4,记an=lg
xn+2 | xn-2 |
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
分析:(Ⅰ)由题设条件知曲线y=f(x)在点(xn,f(xn))处的切线方程是y-(xn2-4)=2xn(x-xn).
由此可知xn2+4=2xnxn+1.所以xn+1=
+
.
(Ⅱ)由xn+1=
+
,知xn+1+2=
+
+2=
,同理xn+1-2=
.
故
=(
)2.由此入手能够导出xn=
.
(Ⅲ)由题设知xn=
,所以
=
=
<
≤
=
,由此可知Tn<3(n∈N*).
由此可知xn2+4=2xnxn+1.所以xn+1=
xn |
2 |
2 |
xn |
(Ⅱ)由xn+1=
xn |
2 |
2 |
xn |
xn |
2 |
2 |
xn |
(xn+2)2 |
2xn |
(xn-2)2 |
2xn |
故
xn+1+2 |
xn+1-2 |
xn+2 |
xn-2 |
2(32n-1+1) |
32n-1-1 |
(Ⅲ)由题设知xn=
2(32n-1+1) |
32n-1-1 |
bn+1 |
bn |
32n-1-1 |
32n-1 |
1 |
32n-1+1 |
1 |
32n-1 |
1 |
321-1 |
1 |
3 |
解答:解:(Ⅰ)由题可得f′(x)=2x.
所以曲线y=f(x)在点(xn,f(xn))处的切线方程是:y-f(xn)=f′(xn)(x-xn).
即y-(xn2-4)=2xn(x-xn).
令y=0,得-(xn2-4)=2xn(xn+1-xn).
即xn2+4=2xnxn+1.
显然xn≠0,∴xn+1=
+
.
(Ⅱ)由xn+1=
+
,知xn+1+2=
+
+2=
,
同理xn+1-2=
,故
=(
)2.
从而lg
=2lg
,即an+1=2an.所以,数列{an}成等比数列.
故an=2n-1a1=2n-1lg
=2n-1lg3.
即lg
=2n-1lg3.
从而
=32n-1
所以xn=
(Ⅲ)由(Ⅱ)知xn=
,
∴bn=xn-2=
>0
∴
=
=
<
≤
=
当n=1时,显然T1=b1=2<3.
当n>1时,bn<
bn-1<(
)2bn-2<<(
)n-1b1
∴Tn=b1+b2+…+bn<b1+
b1+…+(
)n-1b1=
=3-3•(
)n<3.
综上,Tn<3(n∈N*).
所以曲线y=f(x)在点(xn,f(xn))处的切线方程是:y-f(xn)=f′(xn)(x-xn).
即y-(xn2-4)=2xn(x-xn).
令y=0,得-(xn2-4)=2xn(xn+1-xn).
即xn2+4=2xnxn+1.
显然xn≠0,∴xn+1=
xn |
2 |
2 |
xn |
(Ⅱ)由xn+1=
xn |
2 |
2 |
xn |
xn |
2 |
2 |
xn |
(xn+2)2 |
2xn |
同理xn+1-2=
(xn-2)2 |
2xn |
xn+1+2 |
xn+1-2 |
xn+2 |
xn-2 |
从而lg
xn+1+2 |
xn+1-2 |
xn+2 |
xn-2 |
故an=2n-1a1=2n-1lg
x1+2 |
x1-2 |
即lg
xn+2 |
xn-2 |
从而
xn+2 |
xn-2 |
所以xn=
2(32n-1+1) |
32n-1-1 |
(Ⅲ)由(Ⅱ)知xn=
2(32n-1+1) |
32n-1-1 |
∴bn=xn-2=
4 |
32n-1-1 |
∴
bn+1 |
bn |
32n-1-1 |
32n-1 |
1 |
32n-1+1 |
1 |
32n-1 |
1 |
321-1 |
1 |
3 |
当n=1时,显然T1=b1=2<3.
当n>1时,bn<
1 |
3 |
1 |
3 |
1 |
3 |
∴Tn=b1+b2+…+bn<b1+
1 |
3 |
1 |
3 |
b1[1-(
| ||
1-
|
1 |
3 |
综上,Tn<3(n∈N*).
点评:本题综合考查数列、函数、不等式、导数应用等知识,以及推理论证、计算及解决问题的能力.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|