题目内容

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[-3,3]上的最大值和最小值.
分析:(1)因为函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值得到三个方程求出a、b、c;
(2)令f′(x)=x2+x-2=0解得x=-2,x=1,在区间[-3,3]上讨论函数的增减性,得到函数的最值.
解答:解:(1)f′(x)=3ax2+2bx-2由条件知
f′(-2)=12a-4b-2=0
f′(1)=3a+2b-2=0
f(-2)=-8a+4b+4+c=6
解得a=
1
3
,b=
1
2
,c=
8
3


(2)f(x)=
1
3
x3
1
2
x2-2x+
8
3
,f′(x)=x2+x-2=0解得x=-2,x=1
精英家教网
由上表知,在区间[-3,3]上,当x=3时,fmax=10
1
6
;当x=1,fmin=
3
2
点评:考查函数利用导数研究函数极值的能力,利用导数研究函数增减性的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网