题目内容
12.设三位数n=$\overline{abc}$(即n=100a+10b+c,其中a,b,c∈N*),若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有( )A. | 45个 | B. | 81个 | C. | 165个 | D. | 216个 |
分析 先考虑等边三角形情况,则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个,再考虑等腰三角形情况,若a,b是腰,则a=b,列举出所有的情况,注意去掉不能构成三角形的结果,交换腰和底的位置,求和得到结果.
解答 解:由题意知以a、b、c为三条边的长可以构成一个等腰(含等边)三角形,
先考虑等边三角形情况
则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个
再考虑等腰三角形情况,若a,b是腰,则a=b
当a=b=1时,c<a+b=2,则c=1,与等边三角形情况重复;
当a=b=2时,c<4,则c=1,3(c=2的情况等边三角形已经讨论了),此时n有2个;
当a=b=3时,c<6,则c=1,2,4,5,此时n有4个;
当a=b=4时,c<8,则c=1,2,3,5,6,7,有6个;
当a=b=5时,c<10,有c=1,2,3,4,6,7,8,9,有8个;
由加法原理知n有2+4+6+8+8+8+8+8=52个
同理,若a,c是腰时,c也有52个,b,c是腰时也有52个
所以n共有9+3×52=165个
故选C.
点评 本题考查排列组合的实际应用,本题解题的关键是根据所给的条件不重不漏的列举出所有的结果,注意数字要首先能够构成三角形,即满足两边之和大于第三边,本题是一个易错题.
练习册系列答案
相关题目
3.集合M={x|x2-2x-3<0},N={x|x2+x+1>0},则M∩N是( )
A. | (-3,1) | B. | R | C. | (-1,3) | D. | ∅ |
4.国务院召开青少年校园足球工作电视电话会议,提出教育部将主导校园足球“足球进校园”活动.某市教育部门未了解学生喜欢足球是否与性别有关,在某学校该校50名学生进行了问卷调查,得到了如下的列联表:
(Ⅰ)按性别用分层抽样的方法在喜欢足球的学生中抽取6人,求这6人中男生的人数;
(Ⅱ)在上述抽取的6人中随机抽取2人做进一步调查,求恰有1名女生的概率;
(Ⅲ)根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下,认为喜欢足球与性别有关系?
下面的临界值表供参考:
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
喜欢足球 | 不喜欢足球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(Ⅱ)在上述抽取的6人中随机抽取2人做进一步调查,求恰有1名女生的概率;
(Ⅲ)根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下,认为喜欢足球与性别有关系?
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.执行如图的程序框图,如果输入a=4,那么输出的n的值为( )
A. | 5 | B. | 4 | C. | 3 | D. | 2 |