ÌâÄ¿ÄÚÈÝ

8£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£®¹ýÔ­µãµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¨A£¬B²»ÊÇÍÖÔ²CµÄ¶¥µã£©£¬µãDÔÚÍÖÔ²CÉÏ£¬ÇÒAD¡ÍAB£®
£¨1£©ÇóÍÖÔ²CµÄÓÒ×¼Ïß·½³ÌΪ£ºx=4£®ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßBD¡¢ABµÄбÂÊ·Ö±ðΪk1£¬k2£¬Çó$\frac{{k}_{1}}{{k}_{2}}$µÄÖµ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ×¼Ïß·½³Ì£¬¼°a£¬b£¬cµÄ¹Øϵ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA£¨x1£¬y1£©£¨x1y1¡Ù0£©£¬D£¨x2£¬y2£©£¬ÔòB£¨-x1£¬-y1£©£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬ÓÉÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¿ÉµÃADµÄбÂÊ£¬ÉèÖ±ÏßADµÄ·½³ÌΪy=kx+m£¨k¡¢m¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬½áºÏÖ±ÏßµÄбÂʹ«Ê½¿ÉµÃBDµÄбÂÊ£¬½ø¶øµÃµ½ËùÇóÖµ£®

½â´ð ½â£º£¨1£©ÀëÐÄÂÊΪ$\frac{1}{2}$£¬¼´Îªe=$\frac{c}{a}$=$\frac{1}{2}$£¬
ÓÒ×¼Ïß·½³ÌΪ£ºx=4£¬¼´Îª$\frac{{a}^{2}}{c}$=4£¬
ÓÉb2=a2-c2£¬½â·½³Ì¿ÉµÃa=2£¬b=$\sqrt{3}$£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÉèA£¨x1£¬y1£©£¨x1y1¡Ù0£©£¬D£¨x2£¬y2£©£¬ÔòB£¨-x1£¬-y1£©£¬
¡ßkAB=$\frac{{y}_{1}}{{x}_{1}}$£¬AD¡ÍAB£¬¡àÖ±ÏßADµÄбÂÊk=-$\frac{{x}_{1}}{{y}_{1}}$£¬
ÉèÖ±ÏßADµÄ·½³ÌΪy=kx+m£¨k¡¢m¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì£¬
ÏûÈ¥yÕûÀíµÃ£º£¨b2+a2k2£©x2+2ma2k2x+a2m2-a2b2=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{2m{a}^{2}{k}^{2}}{{b}^{2}+{a}^{2}{k}^{2}}$£¬
¡ày1+y2=k£¨x1+x2£©+2m=$\frac{2m{b}^{2}}{{b}^{2}+{a}^{2}{k}^{2}}$£¬
ÓÉÌâ¿ÉÖª£ºx1¡Ù-x2£¬¡àk1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=-$\frac{{b}^{2}}{-k{a}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$•$\frac{{y}_{1}}{{x}_{1}}$=$\frac{{b}^{2}}{{a}^{2}}$k2£¬
¼´ÓÐ$\frac{{k}_{1}}{{k}_{2}}$µÄֵΪ$\frac{{b}^{2}}{{a}^{2}}$£®
ÓÉe=$\frac{c}{a}$=$\frac{1}{2}$£¬¿ÉµÃ$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{1}{4}$£¬
Ôò$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$£¬
£¬¼´$\frac{{k}_{1}}{{k}_{2}}$µÄÖµ$\frac{3}{4}$£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÌ⣬¿¼²éÍÖÔ²·½³ÌµÄÇ󷨣¬ÒÔ¼°ÍÖÔ²µÄÐÔÖÊ£¬ÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø