ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÍÖÔ²G£º$\frac{x^2}{a^2}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬ÓÒ½¹µãΪ£¨2$\sqrt{2}$£¬0£©£¬¹ýÔµãOµÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬Ï߶ÎABµÄ´¹Ö±Æ½·ÖÏß½»ÍÖÔ²GÓÚµãM£®£¨¢ñ£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤£º$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OM}|}^2}}}$Ϊ¶¨Öµ£¬²¢Çó¡÷AOMÃæ»ýµÄ×îСֵ£®
·ÖÎö £¨I£©ÓÉÌâÒâ$c=2\sqrt{2}$£¬$e=\frac{c}{a}=\frac{{\sqrt{6}}}{3}$£¬ÓÖb2=a2-c2£¬ÁªÁ¢½â³ö¼´¿É£»
£¨II£©¶ÔÖ±ÏßlµÄбÂÊ·ÖÀàÌÖÂÛ£º£¨1£©²»´æÔÚʱֱ½ÓÇó³ö£»£¨2£©µ±Ö±ÏßlÓë×ø±êÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¨k¡Ù0£©£¬A£¨x1£¬y1£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨1+3k2£©x2=12£¬¼´¿ÉµÃ³ö|OA|2£¬ÓÖOMÊÇÏ߶ÎABµÄ´¹Ö±Æ½·ÖÏߣ¬¹Ê·½³ÌΪ$y=-\frac{1}{k}x$£¬Í¬Àí¿ÉµÃ|OM|2£¬´úÈë$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OM}|}^2}}}$¼´¿ÉÖ¤Ã÷Ϊ¶¨Öµ£®
Çó¡÷AOMÃæ»ýʱÓÐÒÔÏÂÁ½ÖÖ·½·¨£º·½·¨Ò»£ºÓÉ$\frac{1}{3}=\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OM}|}^2}}}¡Ý\frac{2}{{|{OA}|•|{OM}|}}$£¬¼´¿ÉµÃ³ö£»·½·¨¶þ£º¡÷AOMµÄÃæ»ý$S=\frac{1}{2}|{OA}|•|{OM}|$£¬°Ñ£¨2£©´úÈ뻯¼òÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð £¨I£©½â£ºÓÉÌâÒâ$c=2\sqrt{2}$£¬
¡ß$e=\frac{c}{a}=\frac{{\sqrt{6}}}{3}$£¬¡à$a=2\sqrt{3}$£¬
¡àb2=a2-c2=4
¡àÍÖÔ²GµÄ·½³ÌΪ$\frac{x^2}{12}+\frac{y^2}{4}=1$£®
£¨¢ò£©Ö¤Ã÷£º£¨1£©µ±Ö±Ïßl´¹Ö±ÓÚ×ø±êÖáʱ£¬
Ò×µÃ$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OM}|}^2}}}=\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{3}$£¬
¡÷AOMµÄÃæ»ý$S=\frac{1}{2}|{OA}|•|{OM}|=2\sqrt{3}$£®
£¨2£©µ±Ö±ÏßlÓë×ø±êÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¨k¡Ù0£©£¬A£¨x1£¬y1£©£¬
ÓÉ$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{12}+\frac{y^2}{4}=1\end{array}\right.$ÏûÔªµÃ£¨1+3k2£©x2=12£¬
¡à${x_1}^2=\frac{12}{{1+3{k^2}}}$£¬${y_1}^2={k^2}{x_1}^2=\frac{{12{k^2}}}{{1+3{k^2}}}$£¬
¡à${|{OA}|^2}={x_1}^2+{y_1}^2=\frac{{12£¨1+{k^2}£©}}{{1+3{k^2}}}$£¬
ÓÖOMÊÇÏ߶ÎABµÄ´¹Ö±Æ½·ÖÏߣ¬¹Ê·½³ÌΪ$y=-\frac{1}{k}x$£¬
ͬÀí¿ÉµÃ${|{OM}|^2}=\frac{{12£¨1+{k^2}£©}}{{{k^2}+3}}$£¬
´Ó¶ø$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OM}|}^2}}}=\frac{{1+3{k^2}}}{{12£¨1+{k^2}£©}}+\frac{{{k^2}+3}}{{12£¨1+{k^2}£©}}=\frac{{4{k^2}+4}}{{12£¨1+{k^2}£©}}=\frac{1}{3}$Ϊ¶¨Öµ£®
·½·¨Ò»£ºÓÉ$\frac{1}{3}=\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OM}|}^2}}}¡Ý\frac{2}{{|{OA}|•|{OM}|}}$£¬ËùÒÔ|OA|•|OM|¡Ý6£¬
µ±ÇÒ½öµ±|OA|=|OM|ʱ£¬¼´1+3k2=k2+3£¬k=¡À1ʱ£¬µÈºÅ³ÉÁ¢£¬
¡à¡÷AOMµÄÃæ»ý$S=\frac{1}{2}|{OA}|•|{OM}|¡Ý3$£®
¡àµ±k=¡À1ʱ£¬¡÷AOMµÄÃæ»ýÓÐ×îСֵ3£®
·½·¨¶þ£º¡÷AOMµÄÃæ»ý$S=\frac{1}{2}|{OA}|•|{OM}|$£¬
¡à${S^2}=\frac{1}{4}{|{OA}|^2}•{|{OM}|^2}=\frac{1}{4}¡Á\frac{{12£¨1+{k^2}£©}}{{1+3{k^2}}}¡Á\frac{{12£¨1+{k^2}£©}}{{{k^2}+3}}$=$\frac{{36{{£¨1+{k^2}£©}^2}}}{{£¨1+3{k^2}£©£¨{k^2}+3£©}}¡Ý\frac{{36{{£¨1+{k^2}£©}^2}}}{{{{£¨\frac{{1+3{k^2}+{k^2}+3}}{2}£©}^2}}}$=9£®
¡àµ±ÇÒ½öµ±1+3k2=k2+3ʱ£¬¼´k=¡À1ʱ£¬¡÷AOMµÄÃæ»ýÓÐ×îСֵ3£®
µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¸ùÓëϵÊýµÄ¹Øϵ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹ØϵµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | p1=p2 | B£® | p1+p2=1 | C£® | p1£¾p2 | D£® | p1£¼p2 |
A£® | $\sqrt{2}$ | B£® | 2 | C£® | 2$\sqrt{2}$ | D£® | 4 |
A£® | £¨$\frac{2}{3}$£¬+¡Þ£© | B£® | £¨$\frac{4}{3}$£¬+¡Þ£© | C£® | £¨0£¬$\frac{2}{3}$£© | D£® | £¨$\frac{2}{3}$£¬$\frac{4}{3}$£© |
A£® | y=$\sqrt{3}x+3\sqrt{3}$+2 | B£® | y=$\frac{{\sqrt{3}}}{3}x+\sqrt{3}$+2 | C£® | y=$\sqrt{3}x-3\sqrt{3}$-2 | D£® | y=$\frac{{\sqrt{3}}}{3}x-\sqrt{3}$-2 |