ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªÍÖÔ²$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{{\sqrt{3}}}{2}$£¬ÍÖÔ²×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£¬ÇÒAµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£®ÉèPΪÍÖÔ²Éϲ»Í¬ÓÚA¡¢BµÄÈÎÒ»µã£¬×÷PQ¡ÍxÖᣬQΪ´¹×㣮MΪÏ߶ÎPQÖе㣬ֱÏßAM½»Ö±Ïßl£ºx=bÓÚµãC£¬DΪÏ߶ÎBCÖе㣨Èçͼ£©£®£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Ö¤Ã÷£º¡÷OMDÊÇÖ±½ÇÈý½ÇÐΣ®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2a=4}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£»
£¨2£©A£¨-1£¬0£©£¬B£¨1£¬0£©£¬Ö±Ïßl£ºx=1£®ÉèµãP£¨x0£¬y0£©£¬¿ÉµÃµãM£¬°ÑP´úÈëÍÖÔ²·½³Ì¿ÉµÃ$4x_0^2+y_0^2=4$£®µÃ³öÖ±ÏßAMµÄ·½³Ì£¬Áîx=1£¬µÃC£¨1£¬$\frac{y_0}{{{x_0}+1}}$£©£¬¿ÉµÃD£¨1£¬$\frac{y_0}{{2£¨{x_0}+1£©}}$£©£®ÔÙÀûÓÃÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹Øϵ¼´¿ÉÖ¤Ã÷£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2a=4}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{y^2}{4}+{x^2}=1$£®
£¨2£©Ö¤Ã÷£ºA£¨-1£¬0£©£¬B£¨1£¬0£©£¬Ö±Ïßl£ºx=1£®
ÉèµãP£¨x0£¬y0£©£¬¿ÉµÃµã$M£¨{x_0}£¬\frac{y_0}{2}£©$£¬ÇÒ$4x_0^2+y_0^2=4$£¬
Ö±ÏßAM£º$y=\frac{y_0}{{2£¨{x_0}+1£©}}£¨x+1£©$£¬Áîx=1£¬µÃC£¨1£¬$\frac{y_0}{{{x_0}+1}}$£©£¬¡àD£¨1£¬$\frac{y_0}{{2£¨{x_0}+1£©}}$£©£®
¡à$\overrightarrow{OM}=£¨{x_0}£¬\frac{y_0}{2}£©$£¬$\overrightarrow{DM}=£¨{x_0}-1£¬\frac{y_0}{2}-\frac{y_0}{{2£¨{x_0}+1£©}}£©=£¨{x_0}-1£¬\frac{{{x_0}{y_0}}}{{2£¨{x_0}+1£©}}£©$£®
¡à$\overrightarrow{OM}•\overrightarrow{DM}=£¨{x_0}£¬\frac{y_0}{2}£©•£¨{x_0}-1£¬\frac{{{x_0}{y_0}}}{{2£¨{x_0}+1£©}}£©={x_0}£¨{x_0}-1£©+\frac{{{x_0}y_0^2}}{{4£¨{x_0}+1£©}}=\frac{{{x_0}£¨4x_0^2-4+y_0^2£©}}{{4£¨{x_0}+1£©}}$£¬
¡ß$4{x}_{0}^{2}+{y}_{0}^{2}$=4£¬¡à$\overrightarrow{OM}•\overrightarrow{DM}$=0£¬
¡à¡ÏOMD=90¡ã£®
¹Ê¡÷OMDÊÇÖ±½ÇÈý½ÇÐΣ®
µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýÖ±Ö®¼äµÄ¹Øϵ¡¢Öеã×ø±ê¹«Ê½µÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $\frac{7}{4}$ | B£® | $\frac{127}{64}$ | C£® | $\frac{9}{4}$ | D£® | $\frac{129}{64}$ |
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |