题目内容

【题目】已知函数f(x)=2sinxcosx﹣sin2x﹣3cos2x+1.
(1)求函数y=f(x)的单调递增区间;
(2)若函数y=f(x)在区间[0,a]上恰有3个零点,求实数a的取值范围.

【答案】
(1)解:f(x)=sin2x+cos2x﹣3cos2x

=sin2x﹣2cos2x=sin2x﹣cos2x﹣1

=

因为

所以

即增区间为


(2)解:令f(x)=0,即

解得

当k1=0或1时,

当k2=0或1时,

因为函数y=f(x)在区间[0,a]上恰有3个零点,它们是

所以


【解析】(1)利用两角和与差的三角函数以及二倍角公式化简f(x)为: ,利用正弦函数的单调增区间求解函数的单调增区间即可;(2)令f(x)=0,求出函数的零点,通过函数y=f(x)在区间[0,a]上恰有3个零点,判断零点的值,然后求解a的范围.
【考点精析】解答此题的关键在于理解正弦函数的单调性的相关知识,掌握正弦函数的单调性:在上是增函数;在上是减函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网