题目内容
在不等式组
所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为______.
|
由
,得到可行域如图中阴影部分,
则阴影部分中的格点有(2,1),(2,2),(3,1),(3,2),(3,3)共5个点,
从中任取3个点,所有的取法种数为
=10种,
其中只有1种情况共线,即取(3,1),(3,2),(3,3)三点时共线,不能构成三角形,
则3点恰能成为一个三角形的三个顶点的概率为p=
.
故答案为
.
|
则阴影部分中的格点有(2,1),(2,2),(3,1),(3,2),(3,3)共5个点,
从中任取3个点,所有的取法种数为
C | 35 |
其中只有1种情况共线,即取(3,1),(3,2),(3,3)三点时共线,不能构成三角形,
则3点恰能成为一个三角形的三个顶点的概率为p=
9 |
10 |
故答案为
9 |
10 |
练习册系列答案
相关题目