题目内容

【题目】已知命题p:方程x2+mx+1=0有两个不等的负根,命题q:4x2+4(m﹣2)x+1=0无实根,P且q为真命题,求实数m的取值范围.

【答案】解:由题意,得p: ,解之得m>2,
q:△=16(m﹣2)2﹣16=16(m2﹣4m+3)<0,解之得1<m<3
∵p且q为真,
∴p,q同时为真,则 ,解之得2<m<3,
∴实数m的取值范围是2<m<3
【解析】若命题p为真,由一元二次方程的判别式和韦达定理,联列不等式组并解之得m>2;若命题q为真,则方程4x2+4(m﹣2)x+1=0的根的判别式小于0,解之得1<m<3.命题p且q为真,说明命题p和q都是真命题,取交集即得实数m的取值范围.
【考点精析】通过灵活运用复合命题的真假,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网