题目内容
8.若实数x,y满足x2+y2=1,则$\frac{xy+1}{x+y-1}$的取值范围是(-∞,1-$\sqrt{2}$]∪($\sqrt{2}$+1,+∞).分析 令x=cosθ,y=sinθ,θ∈[0,2π),x+y=t=$\sqrt{2}$sin(θ+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$].则$\frac{xy+1}{x+y-1}$化简为$\frac{t-1}{2}$+$\frac{1}{t-1}$+1,再令m=t-1∈[-$\sqrt{2}$-1,$\sqrt{2}$-1],且m≠0,再利用函数的单调性求得它的范围,综合可得结论.
解答 解:∵实数x,y满足x2+y2=1,可令x=cosθ,y=sinθ,
θ∈[0,2π),
则x+y=t=$\sqrt{2}$sin(θ+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],则xy=$\frac{{t}^{2}-1}{2}$,
则 $\frac{xy+1}{x+y-1}$=$\frac{sinθcosθ+1}{sinθ+cosθ-1}$=$\frac{\frac{{t}^{2}-1}{2}+1}{t-1}$=$\frac{{t}^{2}+1}{2(t-1)}$=$\frac{{(t-1)}^{2}+2(t-1)+2}{2(t-1)}$
=$\frac{t-1}{2}$+$\frac{1}{t-1}$+1.
令m=t-1∈[-$\sqrt{2}$-1,$\sqrt{2}$-1],m≠0,则式子$\frac{xy+1}{x+y-1}$=$\frac{m}{2}$+$\frac{1}{m}$+1.
令f(m)=$\frac{m}{2}$+$\frac{1}{m}$+1,m∈[-$\sqrt{2}$-1,$\sqrt{2}$-1],且m≠0,如图所示:
由于f′(m)=$\frac{1}{2}$-$\frac{1}{{m}^{2}}$,
①故当m∈[-$\sqrt{2}$-1,-$\sqrt{2}$)时,f′(m)>0,f(m)单调递增;
②故当m∈[-$\sqrt{2}$,0)时,f′(m)<0,f(m)单调递减;
③故当m∈(0,$\sqrt{2}$-1]时,f′(m)<0,f(m)单调递减.
又当m=-$\sqrt{2}$-1时,f(m)=$\frac{3-3\sqrt{2}}{2}$;当m=-$\sqrt{2}$时,f(m)=1-$\sqrt{2}$;
当m趋于0时,f(m)趋于±∞;当m=$\sqrt{2}$-1时,f(m)=$\frac{3+3\sqrt{2}}{2}$,
结合函数f(m)的图象,
可得m的范围为::(-∞,1-$\sqrt{2}$]∪($\sqrt{2}$+1,+∞),
故答案为:(-∞,1-$\sqrt{2}$]∪($\frac{3+3\sqrt{2}}{2}$,+∞).
点评 本题考查三角恒等变换,函数的单调性与导数的关系,求函数的最值,考查计算能力,属于难题.
A. | $\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{B}_{1}}$+$\overrightarrow{{B}_{1}D}$ | B. | $\overrightarrow{AB}$+$\overrightarrow{{B}_{1}{C}_{1}}$+$\overrightarrow{D{D}_{1}}$ | ||
C. | $\overrightarrow{AB}$+$\overrightarrow{B{B}_{1}}$+$\overrightarrow{{B}_{1}{D}_{1}}$ | D. | $\overrightarrow{A{B}_{1}}$+$\overrightarrow{C{C}_{1}}$ |
A. | $\frac{5}{11}$ | B. | $\frac{6}{11}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{5}$ |