题目内容
已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.
cosα=-1,tanα=0.
解析
已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(1)求函数f(x)的解析式;(2)求函数的单调递增区间.
设函数f(x)=sinxcosx+cos2x+a.(1)写出函数f(x)的最小正周期及单调递减区间;(2)当x∈时,函数f(x)的最大值与最小值的和为,求a的值.
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的周期为π,且图象上一个最低点为M.(1)求f(x)的解析式;(2)当x∈时,求f(x)的最值.
已知函数的部分图像如图所示.(1)求的值;(2)求函数的单调递增区间.
设函数f(x)=sin+sin+cos ωx(其中ω>0),且函数f(x)的图象的两条相邻的对称轴间的距离为.(1)求ω的值;(2)将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间上的最大值和最小值.
已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.
已知函数f(x)=sincos+cos2-(1)若f(α)=,α∈(0,π),求α的值;(2)求函数f(x)在上最大值和最小值.
已知0<x<π,sinx+cosx=.(1)求sinx-cosx的值;(2)求tanx的值.