题目内容
19.设函数f(x)=lnx+a(1-x).(Ⅰ)讨论:f(x)的单调性;
(Ⅱ)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
分析 (Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;
(2)先求出函数的最大值,再构造函数(a)=lna+a-1,根据函数的单调性即可求出a的范围.
解答 解:(Ⅰ)f(x)=lnx+a(1-x)的定义域为(0,+∞),
∴f′(x)=$\frac{1}{x}$-a=$\frac{1-ax}{x}$,
若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,
若a>0,则当x∈(0,$\frac{1}{a}$)时,f′(x)>0,当x∈($\frac{1}{a}$,+∞)时,f′(x)<0,所以f(x)在(0,$\frac{1}{a}$)上单调递增,在($\frac{1}{a}$,+∞)上单调递减,
(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=$\frac{1}{a}$取得最大值,最大值为f($\frac{1}{a}$)=-lna+a-1,
∵f($\frac{1}{a}$)>2a-2,
∴lna+a-1<0,
令g(a)=lna+a-1,
∵g(a)在(0,+∞)单调递增,g(1)=0,
∴当0<a<1时,g(a)<0,
当a>1时,g(a)>0,
∴a的取值范围为(0,1).
点评 本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.
练习册系列答案
相关题目
10.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则( )
A. | p是q的充分条件,但不是q的必要条件 | |
B. | p是q的必要条件,但不是q的充分条件 | |
C. | p是q的充分必要条件 | |
D. | p既不是q的充分条件,也不是q的必要条件 |
7.若为a实数,且$\frac{2+ai}{1+i}$=3+i,则a=( )
A. | -4 | B. | -3 | C. | 3 | D. | 4 |
4.如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为( )
A. | $\frac{8}{3}$ | B. | 3 | C. | $\frac{10}{3}$ | D. | $\frac{5}{2}$ |