题目内容
16.已知函数f(x)=|2x-4|+1.(Ⅰ)解不等式f(x)>|x+1|;
(Ⅱ)设正数a,b满足ab=a+b,若不等式f(m+1)≤a+4b对任意a,b∈(0,+∞)都成立,求实数m的取值范围.
分析 (Ⅰ)把要求得不等式去掉绝对值,化为与之等价的3个不等式组,求得每个不等式组的解集,再取并集,即得所求.
(Ⅱ)利用基本不等式求得a+4b的最小值为9,可得f(m+1)≤9,由此求得m的范围.
解答 解:(Ⅰ)不等式f(x)>|x+1|?|2x-4|+1>|x+1|,
?$\left\{\begin{array}{l}x≥2\\ 2x-4+1>x+1\end{array}\right.$,或$\left\{\begin{array}{l}-1<x<2\\ 4-2x+1>x+1\end{array}\right.$,或$\left\{\begin{array}{l}x≤-1\\ 4-2x+1>-(x+1)\end{array}\right.$.
求得x>4,或$-1<x<\frac{4}{3}$,或x≤-1,
于是原不等式的解集为$(-∞,\frac{4}{3})∪(4,+∞)$.
(Ⅱ)因为$ab=a+b?\frac{1}{a}+\frac{1}{b}=1$,所以$a+4b=(\frac{1}{a}+\frac{1}{b})(a+4b)≥{(\sqrt{\frac{1}{a}}•\sqrt{a}+\sqrt{\frac{1}{b}}•\sqrt{4b})^2}=9$,
当且仅当$\left\{\begin{array}{l}a=2b\\ ab=a+b\end{array}\right.$即$\left\{\begin{array}{l}a=3\\ b=\frac{3}{2}\end{array}\right.$时a+4b取得最小值9.
因为f(m+1)≤a+4b对任意a,b∈(0,+∞)都成立,
所以f(m+1)≤9?|m-1|≤4?-4≤m-1≤4,
于是,所求实数m的取值范围是-3≤m≤5.
点评 本题主要考查绝对值不等式的解法,基本不等式的应用,函数的恒成立问题,属于中档题.
| A. | 4x-y-2=0 | B. | 7x-2y-3=0 | C. | 3x-y-1=0 | D. | 5x-y-3=0 |
(1)函数y=ax(a>0且a≠1)与函数$y={log_a}{a^x}(a>0$且a≠1)的定义域相同;
(2)函数y=x2与函数y=3x的值域相同;
(3)函数$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$与函数$y=\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$均是定义在(-∞,0)∪(0,+∞)上的奇函数;
(4)函数y=(x-1)2与函数y=2x-1在(0,+∞)上都是奇函数.
其中正确说法的序号是( )
| A. | (1)(2) | B. | (1)(3) | C. | (2)(4) | D. | (3)(4) |
(Ⅰ)求f(2)的值;
(Ⅱ)解不等式f(m-2)≤2.
| A. | $a+\frac{1}{a}≥2$ | B. | $\frac{a}{b}+\frac{b}{a}≥2$ | C. | a2+b2>2ab | D. | $\frac{{{a^2}+3}}{{\sqrt{{a^2}+2}}}>2$ |
| A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | 4 |