题目内容
【题目】双曲线 (a>0,b>0)的左右焦点分别为F1 , F2渐近线分别为l1 , l2 , 位于第一象限的点P在l1上,若l2⊥PF1 , l2∥PF2 , 则双曲线的离心率是( )
A.
B.
C.2
D.
【答案】C
【解析】解:∵双曲线 (a>0,b>0)的左、右焦点分别为F1 , F2 ,
渐近线分别为l1 , l2 , 点P在第一 象限内且在l1上,
∴F1(﹣c,0)F2(c,0)P(x,y),
渐近线l1的直线方程为y= x,渐近线l2的直线方程为y=﹣ x,
∵l2∥PF2 , ∴ ,即ay=bc﹣bx,
∵点P在l1上即ay=bx,
∴bx=bc﹣bx即x= ,∴P( , ),
∵l2⊥PF1 ,
∴ ,即3a2=b2 ,
∵a2+b2=c2 ,
∴4a2=c2 , 即c=2a,
∴离心率e= =2.
故选C.
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但蔬菜上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:
1 | 2 | 3 | 4 | 5 | |
58 | 54 | 39 | 29 | 10 |
(1)在答题纸的坐标系中,描出散点图,并判断变量与是正相关还是负相关;
(2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值与,完成以下表格(填在答题卡中),求出与的回归方程.(, 保留两位有效数字):
1 | 4 | 9 | 16 | 25 | |
58 | 54 | 39 | 29 | 10 | |
(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请评估需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)(附:对于一组数据, ,……, ,其回归直线的斜率和截距的最小二乘法估计分别为: , )