题目内容
已知:
=(x,4,1),
=(-2,y,-1),
=(3,-2,z),
∥
,
⊥
,求:
(1)
,
,
;
(2)(
+
)与(
+
)所成角的余弦值.
a |
b |
c |
a |
b |
b |
c |
(1)
a |
b |
c |
(2)(
a |
c |
b |
c |
分析:(1)由向量的平行和垂直可得关于xyz的关系式,解之即可得向量坐标;
(2)由(1)可得向量
+
与
+
的坐标,进而由夹角公式可得结论.
(2)由(1)可得向量
a |
c |
b |
c |
解答:解:(1)∵
∥
,∴
=
=
,解得x=2,y=-4,
故
=(2,4,1),
=(-2,-4,-1),
又因为
⊥
,所以
•
=0,即-6+8-z=0,解得z=2,
故
=(3,-2,2)
(2)由(1)可得
+
=(5,2,3),
+
=(1,-6,1),
设向量
+
与
+
所成的角为θ,
则cosθ=
=-
a |
b |
x |
2 |
4 |
y |
1 |
-1 |
故
a |
b |
又因为
b |
c |
b |
c |
故
c |
(2)由(1)可得
a |
c |
b |
c |
设向量
a |
c |
b |
c |
则cosθ=
5-12+3 | ||||
|
2 |
19 |
点评:本题考查空间向量平行和垂直的判断,涉及向量的夹角公式,属基础题.
练习册系列答案
相关题目