题目内容
4.解方程组:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=26}\\{xy=5}\end{array}\right.$.分析 xy=5,可得x2y2=25,又x2+y2=26,可得x2,y2是一元二次方程t2-26t+25=0的两个实数根,且x,y同号,解出即可.
解答 解:∵xy=5,∴x2y2=25,
又x2+y2=26,
∴x2,y2是一元二次方程t2-26t+25=0的两个实数根.
解得$\left\{\begin{array}{l}{{x}^{2}=1}\\{{y}^{2}=25}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}=25}\\{{y}^{2}=1}\end{array}\right.$,
又x,y同号,
∴$\left\{\begin{array}{l}{x=1}\\{y=5}\end{array}\right.$,$\left\{\begin{array}{l}{x=-1}\\{y=-5}\end{array}\right.$,或$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$,$\left\{\begin{array}{l}{x=-5}\\{y=-1}\end{array}\right.$.即为原方程组的解.
点评 本题考查了方程组的解法、一元二次方程的解法,考查了计算能力,属于中档题.
练习册系列答案
相关题目
12.在△ABC中,sin2$\frac{A}{2}$=$\frac{c-b}{2c}$(a,b,c分别为角A,B,C的对边),则C=( )
A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
9.已知0<a<1,方程(x-a)(x-$\frac{1}{a}$)=0的解是( )
A. | -a,a | B. | a,$\frac{1}{a}$ | C. | -a,$\frac{1}{a}$ | D. | -$\frac{1}{a}$,a |