题目内容
将形如的符号称二阶行列式,现规定 , 函数=在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形。
(1)求的值及函数的单调递增区间;
(2)若,在上恒成立,求的取值范围.
(1)求的值及函数的单调递增区间;
(2)若,在上恒成立,求的取值范围.
(1),;(2).
试题分析:解题思路:(1)利用定义的行列式化简,再结合图像,利用正三角形求;(2)将在上恒成立,转化为即可.规律总结:(1)对于新定义题目,要真正理解定义,想法与所学知识联系,是解决新定义题目的关键;三角函数的图像与性质要掌握好周期性、单调性;(2)不等式恒成立问题的一般思路是转化成求函数的最值问题.
试题解析:(1) =
=2(+)=2
∴BC=4,=4,T=8=,∴ω= .
∴f(x)=2sin(x+)
单调递增区间:.
(2)依题意,在x∈[0,2]时恒成立,
∴.
时,,
,即为所求.
练习册系列答案
相关题目