题目内容

如图,已知等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为
3
3
,M是AC的中点,则EM,DE所成角的余弦值等于______.
连结CD、CE,取AB的中点H,
设点C在平面ABDE内的射影为O,连结CO、OH、CH
∵CH是等边三角形ABC的中线,∴CH⊥AB
∵CO⊥平面ABDE,得OH是CH在平面ABDE内的射影
∴OH⊥AB,得∠OHC就是二面角C-AB-D的平面角
设AB=2,则等边△ABC中,CH=
3
2
AB=
3

Rt△COH中,cos∠OHC=
OH
CH
=
3
3
,可得OH=
3
3
CH=1,
由此可得点O是正方开ABDE的中心,可得四棱锥C-ABDE是所有棱长均为2的正四棱锥
等边△ACE中,
EM
=
1
2
EA
+
EC
)且|
EM
|=
3

ED
EM
=
1
2
ED
•(
EA
+
EC
)=
1
2
ED
EA
+
1
2
ED
EC

∵∠DEA=90°,得
ED
EA
=0;∠DEC=60°,得
ED
EC
=|
ED
|•|
EC
|cos60°=2
ED
EM
=
1
2
×0+
1
2
×2=1
可得cos<
ED
EM
>=
ED
EM
|
ED
|•|
EM
|
=
1
3
=
3
6

由此结合两条直线所成角的定义,可得直线EM、DE所成角的余弦值等于
3
6

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网