题目内容

已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=
bn-am
n-m
;现已知等比数列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若类比上述结论,则可得到bm+n=______.
等差数列中的bn和am可以类比等比数列中的bn和am
等差数列中的bn-am可以类比等比数列中的
bn
am

等差数列中的
bn-am
n-m
可以类比等比数列中的
n-m
bn
am

故bm+n=
n-m
bn
am

故答案为
n-m
bn
am
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网