题目内容
【题目】在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是__________
①存在点,使得平面平面;
②存在点,使得平面平面;
③的面积可能等于;
④若分别是在平面与平面的正投影的面积,则存在点,使得
【答案】①②③④
【解析】
根据正方体的结构特征,利用线面位置关系的判定定理和性质定理,以及三角形的面积公式和投影的定义,即可求解,得到答案.
①如图所示,当是中点时,可知也是中点且,,,所以平面,所以,同理可知,
且,所以平面,
又平面,所以平面平面,故正确;
②如图所示,取靠近的一个三等分点记为,记,,因为,所以,所以为靠近的一个三等分点,
则为中点,又为中点,所以,且,,,所以平面平面,且平面,
所以平面,故正确;
③如图所示,作,在中根据等面积得:,
根据对称性可知:,又,所以是等腰三角形,
则,故正确;
④如图所示,设,在平面内的正投影为,在平面内的正投影为,所以,,当时,解得:,故正确.
故答案为 ①②③④
【题目】交强险是车主须为机动车购买的险种.若普通座以下私家车投保交强险第一年的费用(基本保费)是元,在下一年续保时,实行费率浮动制,其保费与上一年度车辆发生道路交通事故情况相联系,具体浮动情况如下表:
类型 | 浮动因素 | 浮动比率 |
上一年度未发生有责任的道路交通事故 | 下浮 | |
上两年度未发生有责任的道路交通事故 | 下浮 | |
上三年度未发生有责任的道路交通事故 | 下浮 | |
上一年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一年度发生两次及以上有责任不涉及死亡的道路交通事故 | 上浮 | |
上三年度发生有责任涉及死亡的道路交通事故 | 上浮 |
某一机构为了研究某一品牌座以下投保情况,随机抽取了辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:
类型 | ||||||
数量 |
|
|
|
|
|
|
以这辆该品牌汽车的投保类型的频率视为概率.
(I)试估计该地使用该品牌汽车的一续保人本年度的保费不超过元的概率;
(II)记为某家庭的一辆该品牌车在第四年续保时的费用,求的分布列和期望.
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:
单价(元) | 18 | 19 | 20 | 21 | 22 |
销量(册) | 61 | 56 | 50 | 48 | 45 |
(l)根据表中数据,请建立关于的回归直线方程:
(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:,,,.