题目内容

【题目】己知圆C1的参数方程为 (φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2 cos(θ﹣ ). (Ⅰ)将圆C1的参数方程他为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(Ⅱ)圆C1 , C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

【答案】解:(I)由圆C1的参数方程 , 消去参数φ可得:x2+y2=1.
由圆C2的极坐标方程ρ=2 cos(θ﹣ ),化为 ρ,
∴x2+y2=2x+2y.即(x﹣1)2+(y﹣1)2=2.
(II)由x2+y2=1,x2+y2=2x+2y.可得两圆的相交弦所在的直线方程为2x+2y=1.
圆心(0,0)到此直线的距离d= =
∴弦长|AB|=2 =
【解析】(I)利用sin2φ+cos2φ=1即可把圆C1的参数方程 ,化为直角坐标方程.(II)由x2+y2=1,x2+y2=2x+2y.可得两圆的相交弦所在的直线方程为2x+2y=1.利用点到直线的距离公式可得圆心(0,0)到此直线的距离d,即可得出弦长|AB|=2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网