题目内容

【题目】已知是椭圆的左右顶点,点为椭圆上一点,点关于轴的对称点为,且.

1)若椭圆经过圆的圆心,求椭圆的方程;

2)在(1)的条件下,若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

【答案】12

【解析】

1)设,由在椭圆上求出,再由椭圆过点,从而可得,得椭圆方程;

(2)由题意可知直线的斜率存在,设,直线方程与椭圆方程联立,并消元后应用韦达定理得,同时注意,由弦长公式表示出后可得的取值范围,由向量线性运算求出点坐标,交代入椭圆方程得出的关系,从而得的范围.

1)设,因为,则点关于轴的对称点.

,又由椭圆的方程得

所以

又椭圆过圆的圆心

所以,所以椭圆的标准方程为

2)由题意可知直线的斜率存在,设

得:,得:

.

,结合(*)得:.

.

从而.

∵点在椭圆上,

整理得:

.

练习册系列答案
相关题目

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网