题目内容
如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为( )
分析:等腰Rt△PAB中,算出AE=PE=BE=
PB=
.由线面垂直的判定与性质,证出PB⊥面AEF,得PB⊥EF.在Rt△PEF中算出EF=
tanθ,在Rt△AEF中,算出AF=
,可得S△AEF=
AF•EF=
,利用二次函数的图象与性质,即可得出当且仅当tanθ=
时S△AEF有最大值,可得答案.
1 |
2 |
2 |
2 |
2-2tan2θ |
1 |
2 |
-(tan2θ-
|
| ||
2 |
解答:解:在Rt△PAB中,PA=AB=2,∴PB=2
,
∵AE⊥PB,∴AE=
PB=
,∴PE=BE=
.
∵PA⊥底面ABC,得PA⊥BC,AC⊥BC,PA∩AC=A
∴BC⊥平面PAC,可得AF⊥BC
∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC
∵PB?平面PBC,∴AF⊥PB
∵AE⊥PB且AE∩AF=A,∴PB⊥面AEF,
结合EF?平面AEF,可得PB⊥EF.
Rt△PEF中,∠EPF=θ,可得EF=PE•tanθ=
tanθ,
∵AF⊥平面PBC,EF?平面PBC.∴AF⊥EF.
∴Rt△AEF中,AF=
=
,
∴S△AEF=
AF•EF=
×
tanθ×
=
∴当tan2θ=
,即tanθ=
时,S△AEF有最大值为
故选:D
2 |
∵AE⊥PB,∴AE=
1 |
2 |
2 |
2 |
∵PA⊥底面ABC,得PA⊥BC,AC⊥BC,PA∩AC=A
∴BC⊥平面PAC,可得AF⊥BC
∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC
∵PB?平面PBC,∴AF⊥PB
∵AE⊥PB且AE∩AF=A,∴PB⊥面AEF,
结合EF?平面AEF,可得PB⊥EF.
Rt△PEF中,∠EPF=θ,可得EF=PE•tanθ=
2 |
∵AF⊥平面PBC,EF?平面PBC.∴AF⊥EF.
∴Rt△AEF中,AF=
AE2-EF2 |
2-2tan2θ |
∴S△AEF=
1 |
2 |
1 |
2 |
2 |
2-2tan2θ |
-(tan2θ-
|
∴当tan2θ=
1 |
2 |
| ||
2 |
1 |
2 |
故选:D
点评:本题着重考查了线面垂直的判定与性质、解直角三角形、二次函数的图象与性质和最值讨论等知识点,属于中档题.同时考查了空间想象能力、计算能力和逻辑推理能力,是一道综合性较强的题.
练习册系列答案
相关题目