题目内容
如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.
分析:(I)欲证DE⊥平面PAC,观察本题的条件,BC⊥平面PAC易证,而BC∥平面ADE结合DE=平面PBC∩平面ADE,可证得BC∥ED,由此证法思路已明.
(Ⅱ)由(I),结合二面角A-DE-P为直二面角,可证得AE⊥面PBC,即得AE⊥PC,再由,∠BCA=90°,AP=AC可得出E是中点,由于求多面体ABCED与PAED的体积比可以转化为求面BCED与面PAED的比,问题得解.
(Ⅱ)由(I),结合二面角A-DE-P为直二面角,可证得AE⊥面PBC,即得AE⊥PC,再由,∠BCA=90°,AP=AC可得出E是中点,由于求多面体ABCED与PAED的体积比可以转化为求面BCED与面PAED的比,问题得解.
解答:解:(Ⅰ)∵BC∥平面ADE,BC?平面PBC,
平面PBC∩平面ADE=DE
∴BC∥ED(2分)
∵PA⊥底面ABC,BC?底面ABC∴PA⊥BC.(3分)
又∠BCA=90°,∴AC⊥BC.
∵PA∩AC=A,∴BC⊥平面PAC.(5分)
∴DE⊥平面PAC.(6分)
(Ⅱ)由(Ⅰ)知,DE⊥平面PAC,
又∵AE?平面PAC,PE?平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角A-DE-P的平面角,(8分)
∴∠AEP=90°,即AE⊥PC,(9分)
∵AP=AC,∴E是PC的中点,ED是△PBC的中位线.(10分)
∴
=
=
(12分)
平面PBC∩平面ADE=DE
∴BC∥ED(2分)
∵PA⊥底面ABC,BC?底面ABC∴PA⊥BC.(3分)
又∠BCA=90°,∴AC⊥BC.
∵PA∩AC=A,∴BC⊥平面PAC.(5分)
∴DE⊥平面PAC.(6分)
(Ⅱ)由(Ⅰ)知,DE⊥平面PAC,
又∵AE?平面PAC,PE?平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角A-DE-P的平面角,(8分)
∴∠AEP=90°,即AE⊥PC,(9分)
∵AP=AC,∴E是PC的中点,ED是△PBC的中位线.(10分)
∴
VA-BCED |
VA-PDE |
SBCED |
SPDE |
3 |
1 |
点评:本题考查利用线面垂直的条件证明线面垂直以及求棱锥的体积比,本题中两个问题的证明都转化为了另外问题的证明,体现了做题的灵活性.
练习册系列答案
相关题目