题目内容

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.
分析:(Ⅰ)由三角形中位线定理可得DE∥BC,进而由线面平行的判定定理得到DE∥平面PBC
(II)连接PD,由等腰三角形三线合一,可得PD⊥AB,由DE∥BC,BC⊥AB可得DE⊥AB,进而由线面垂直的判定定理得到AB⊥平面PDE,再由线面垂直的性质得到AB⊥PE;
(Ⅲ)以D为原点建立空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量夹角公式,可得二面角A-PB-E的大小.
解答:解:(Ⅰ)∵D、E分别为AB、AC中点,
∴DE∥BC.
∵DE?平面PBC,BC?平面PBC,
∴DE∥平面PBC.…(4分)
(Ⅱ)连接PD,
∵PA=PB,D为AB中点,
∴PD⊥AB.  ….(5分)
∵DE∥BC,BC⊥AB,
∴DE⊥AB…(6分)
又∵PD∩DE=D,PD,DE?平面PDE
∴AB⊥平面PDE…(8分)
∵PE?平面PDE,
∴AB⊥PE…(9分)
(Ⅲ)∵AB⊥平面PDE,DE⊥AB…(10分)
如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,
则B(1,0,0),P(0,0,
3
),E(0,
3
2
,0),
PB
=(1,0,-
3
),
PE
=(0,
3
2
-
3
).
设平面PBE的法向量
n1
=(x,y,z)

x-
3
z=0
3
2
y-
3
z=0

z=
3

n1
=(3,2,
3
)
…(11分)
∵DE⊥平面PAB,
∴平面PAB的法向量为
n2
=(0,1,0)
.…(12分)
设二面角的A-PB-E大小为θ,
由图知,cosθ=cos<
n1
n2
>=
|
n1
n2
|
|
n1
|•|
n2
|
=
1
2

所以θ=60°,
即二面角的A-PB-E大小为60°…(14分)
点评:本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面位置关系的判定,性质是解答(I)和(II)的关键,而(III)的关键是建立空间坐标系,将空间角问题转化为向量夹角问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网