题目内容
已知向量
,其中
.设函数
.
(Ⅰ)求
的解析式;
(Ⅱ)若
的最小值是
,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232257496541098.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225749669887.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225749856621.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225749872463.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225749872463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750262408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750278292.png)
(Ⅰ)
,
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750340337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750309944.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750340337.png)
(I)利用向量数量积的坐标表示,可求出![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750371962.png)
.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750371962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
(II) ∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750527953.png)
,
然后可以令
换元转化为二次函数最值来解决.
∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750527953.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
∵
, ∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750824586.png)
设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750714776.png)
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232257508701010.png)
时,当且仅当
,这与已知矛盾.
时,当且仅当
.
由已知得
,解得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751526499.png)
时,当且仅当
.
由已知得
,解得
,这与
相矛盾.
综上所述,
为所求.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750371962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750371962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
(II) ∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750527953.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750683888.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
然后可以令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750714776.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750527953.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750683888.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750324673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750824586.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225750714776.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232257508701010.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751073555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751089683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751104634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751463867.png)
由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751494681.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751526499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751541531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751572789.png)
由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751588656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751604550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751635378.png)
综上所述,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225751650490.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目