ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªº¯Êýf£¨x£©=lnx-$\frac{1}{2}$ax2-2x£¨a£¼0£©£¨1£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚµ¥µ÷µÝÔö£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨2£©Èôa=-$\frac{1}{2}$ÇÒ¹ØÓÚxµÄ·½³Ìf£¨x£©=-$\frac{1}{2}$x+bÔÚ[1£¬4]ÉÏÇ¡ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£»
£¨3£©Éè¸÷ÏîΪÕýµÄÊýÁÐ{an}Âú×㣺a1=1£¬a n+1=lnan+an+2£¬n¡ÊN*£¬ÇóÖ¤£ºan¡Ü2n-1£®
·ÖÎö £¨1£©¶Ôº¯Êýf£¨x£©½øÐÐÇóµ¼£¬Áîµ¼Êý´óÓÚµÈÓÚ0ÔÚx£¾0ÉϺã³ÉÁ¢¼´¿É£®
£¨2£©½«aµÄÖµ´úÈëÕûÀí³É·½³ÌµÄÐÎʽ£¬È»ºóת»¯Îªº¯Êý¿¼ÂÇÆäͼÏóÓëxÖáµÄ½»µãµÄÎÊÌ⣮
£¨3£©Éèh£¨x£©=lnx-x+1È»ºóÇóµ¼£¬¿ÉÅжϺ¯Êýh£¨x£©µÄµ¥µ÷ÐÔ£¬ÔÙÓÉÊýѧ¹éÄÉ·¨µÃÖ¤£®
½â´ð ½â£º£¨1£©f¡ä£¨x£©=-$\frac{{ax}^{2}+2x-1}{x}$£¬£¨x£¾0£©
ÒÀÌâÒâf'£¨x£©¡Ý0ÔÚx£¾0ʱºã³ÉÁ¢£¬¼´ax2+2x-1¡Ü0ÔÚx£¾0ºã³ÉÁ¢£®
Ôòa¡Ü$\frac{1-2x}{{x}^{2}}$=£¨ $\frac{1}{x}$-1£©2-1ÔÚx£¾0ºã³ÉÁ¢£¬
¼´a¡Ü£¨£¨$\frac{1}{x}$-1£©2-1£©min£¨x£¾0£©
µ±x=1ʱ£¬£¨$\frac{1}{x}$-1£©2-1È¡×îСֵ-1£¬
¡àaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-1]£®
£¨2£©a=-$\frac{1}{2}$£¬f£¨x£©=-$\frac{1}{2}$x+b£¬
¡à$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b=0
Éèg£¨x£©=$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b£¨x£¾0£©Ôòg'£¨x£©=$\frac{£¨x-2£©£¨x-1£©}{2x}$£¬
ÁÐ±í£º
X | £¨0£¬1£© | 1 | £¨1£¬2£© | 2 | £¨2£¬4£© |
g¡ä£¨x£© | + | 0 | - | 0 | + |
g£¨x£© | ¡ü | ¼«´óÖµ | ¡ý | ¼«Ð¡Öµ | ¡ü |
ÓÖg£¨4£©=2ln2-b-2
¡ß·½³Ìg£¨x£©=0ÔÚ[1£¬4]ÉÏÇ¡ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®
Ôò $\left\{\begin{array}{l}{g£¨1£©¡Ý0}\\{g£¨2£©£¼0}\\{g£¨4£©¡Ý0}\end{array}\right.$£¬µÃ£ºln2-2£¼b¡Ü-$\frac{5}{4}$£®
£¨3£©Éèh£¨x£©=lnx-x+1£¬x¡Ê[1£¬+¡Þ£©£¬Ôòh'£¨x£©=$\frac{1}{x}$-1¡Ü0
¡àh£¨x£©ÔÚ[1£¬+¡Þ£©Îª¼õº¯Êý£¬ÇÒh£¨x£©max=h£¨1£©=0£¬¹Êµ±x¡Ý1ʱÓÐlnx¡Üx-1£®
¡ßa1=1£¬
¼ÙÉèak¡Ý1£¨k¡ÊN*£©£¬Ôòak+1=lnak+ak+2£¾1£¬¹Êan¡Ý1£¨n¡ÊN*£©
´Ó¶øan+1=lnan+an+2¡Ü2an+1£¬¡à1+an+1¡Ü2£¨1+an£©¡Ü¡¡Ü2n£¨1+a1£©
¼´1+an¡Ü2n£¬¡àan¡Ü2n-1£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯Êýµ¥µ÷ÐÔÓëÆäµ¼º¯ÊýÕý¸ºÖ®¼äµÄ¹Øϵ£¬¼´µ±µ¼º¯Êý´óÓÚ0ʱԺ¯Êýµ¥µ÷µÝÔö£¬µ±µ¼º¯ÊýСÓÚ0ʱԺ¯Êýµ¥µ÷µÝ¼õ£®
A£® | $\frac{1}{3}$ | B£® | $\frac{2}{3}$ | C£® | $\frac{5}{3}$ | D£® | 2 |
A£® | Ôöº¯Êý | B£® | ÖÜÆÚº¯Êý | C£® | Æ溯Êý | D£® | żº¯Êý |