ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÇúÏßC£ºx2+y2=1£¬½«ÇúÏßCÉϵĵ㰴×ø±ê±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=3y}\end{array}\right.$µÃµ½ÇúÏßC¡ä£»ÒÔÖ±½Ç×ø±êϵԵãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±êϵ·½³ÌÊǦѣ¨2cos¦È+sin¦È£©=10£®£¨1£©Ð´³öÇúÏßC¡äºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÇóÇúÏßC¡äÉϵĵãMµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ¼°´ËʱµãMµÄ×ø±ê£®
·ÖÎö £¨1£©ÇúÏßC£ºx2+y2=1£¬½«ÇúÏßCÉϵĵ㰴×ø±ê±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=3y}\end{array}\right.$¿ÉµÃ$\left\{\begin{array}{l}{x=\frac{1}{2}{x}^{¡ä}}\\{y=\frac{1}{3}{y}^{¡ä}}\end{array}\right.$£¬´úÈëÇúÏßCµÄ·½³Ì¿ÉµÃµ½ÇúÏßC¡ä£»Ö±ÏßlµÄ¼«×ø±êϵ·½³ÌÊǦѣ¨2cos¦È+sin¦È£©=10£¬°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¼´¿ÉµÃµ½Ö±½Ç×ø±ê·½³Ì£®
£¨2£©ÉèÓëÖ±Ïß2x+y-10=0ƽÐÐÇÒÓëÍÖÔ²CÏàÇеÄÖ±Ïß·½³ÌΪ£º2x+y-t=0£®°Ñy=t-2x´úÈëÇúÏßCµÄ·½³Ì¿ÉµÃ£º25x2-16tx+4t2-36=0£¬Áî¡÷=0£¬½âµÃt£¬¿ÉµÃÇеãM£¬¼´¿ÉµÃ³öµãMµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÇúÏßC£ºx2+y2=1£¬½«ÇúÏßCÉϵĵ㰴×ø±ê±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=3y}\end{array}\right.$¿ÉµÃ$\left\{\begin{array}{l}{x=\frac{1}{2}{x}^{¡ä}}\\{y=\frac{1}{3}{y}^{¡ä}}\end{array}\right.$£¬´úÈëÇúÏßCµÄ·½³Ì¿ÉµÃ£º$\frac{£¨{x}^{¡ä}£©^{2}}{4}+\frac{£¨{y}^{¡ä}£©^{2}}{9}=1$£¬µÃµ½ÇúÏßC¡ä£»
Ö±ÏßlµÄ¼«×ø±êϵ·½³ÌÊǦѣ¨2cos¦È+sin¦È£©=10£¬»¯Îª2x+y-10=0£®
£¨2£©ÉèÓëÖ±Ïß2x+y-10=0ƽÐÐÇÒÓëÍÖÔ²CÏàÇеÄÖ±Ïß·½³ÌΪ£º2x+y-t=0£®
°Ñy=t-2x´úÈëÇúÏßCµÄ·½³Ì¿ÉµÃ£º25x2-16tx+4t2-36=0£¬£¨*£©
Áî¡÷=0£¬½âµÃt=¡À5£¬È¡t=-5£®
Ôò·½³Ì£¨*£©»¯Îª£º£¨5x+8£©2=0£¬
½âµÃx=-$\frac{8}{5}$£¬y=$-\frac{9}{5}$£¬
¡àÇеãM$£¨-\frac{8}{5}£¬-\frac{9}{5}£©$£¬
¡àµãMµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ=$\frac{|-\frac{16}{5}-\frac{9}{5}-10|}{\sqrt{5}}$=3$\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˰Ѽ«×ø±ê·½³Ì»¯ÎªÖ±½Ç·½³Ì¡¢Ö±ÏßÓëÍÖÔ²ÏàÇÐÓᢵ㵽ֱÏߵľàÀ빫ʽ¡¢Ï໥ƽÐеÄÖ±ÏßµÄбÂÊÖ®¼äµÄ¹Øϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | £¨0£¬$\frac{\sqrt{5}}{5}$£© | B£® | £¨$\frac{\sqrt{5}}{5}$£¬1£© | C£® | £¨$\frac{\sqrt{7}}{7}$£¬1£© | D£® | £¨0£¬$\frac{\sqrt{7}}{7}$£© |
A£® | $\sqrt{37}$ | B£® | $\sqrt{13}$ | C£® | 3$\sqrt{7}$ | D£® | 2$\sqrt{6}$ |