题目内容
1.已知函数f(x)=$\frac{1}{2}$cos(2x+$\frac{5π}{6}$),则y=f(x)的图象可由函数g(x)=$\frac{1}{2}$sin(x+$\frac{π}{2}$)的图象(纵坐标不变)( )A. | 先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{5π}{12}$个单位 | |
B. | 先把各点的横坐标伸长到原来的2倍,再向右平移$\frac{5π}{6}$个单位 | |
C. | 先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向左平移$\frac{5π}{12}$个单位 | |
D. | 先把各点的横坐标伸长到原来的2倍,再向左平移$\frac{5π}{6}$个单位 |
分析 依题意,g(x)化简为g(x)=$\frac{1}{2}$cosx,再利用函数y=Acos(ωx+φ)的图象变换即可求得答案.
解答 解:∵f(x)=$\frac{1}{2}$cos(2x+$\frac{5π}{6}$),
∴将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变得函数y=$\frac{1}{2}$cos(x+$\frac{5π}{6}$)的图象,
再将所得图象向右平移$\frac{5π}{6}$个单位,得g(x)=$\frac{1}{2}$cosx,
故选:C.
点评 本题考查函数y=Asin(ωx+φ)的图象变换,考查诱导公式的应用,属于中档题.
练习册系列答案
相关题目
6.已知{an}为等差数列,ap=q,aq=p(p≠q,p,q为正整数),则ap+q的值为( )
A. | 0 | B. | p+q | C. | p-q | D. | 2p |
10.设连续函数f(x)<0,则当a<b时,定积分${∫}_{a}^{b}$f(x)dx的符号( )
A. | 一定是正的 | |
B. | 一定是负的 | |
C. | 当0<a<b时是负的,当a<b<0时是正的 | |
D. | 不能确定 |
11.已知某保险公司每辆车的投保金额均为2800元,公司利用简单随机抽样的方法,对投保车辆进行抽样,样本中每辆车的赔付结果统计如下:
(1)试根据样本估计赔付金额大于投保金额的概率;
(2)保险公司在赔付金额为2000元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?
赔付金额(元) | 0 | 1000 | 2000 | 3000 | 4000 |
车辆数 | 500 | 150 | 200 | 100 | 50 |
(2)保险公司在赔付金额为2000元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?