题目内容
设数列{an},an≠0,a1=
,若以an-1,an为系数的二次方程:an-1x2+anx-1=0(n≥2,n∈N*)都有两个不同的根α,β满足3α-αβ+3β+1=0
(1)求证:{an-
}为等比数列;
(2)求{an}的通项公式并求前n项和Sn.
5 |
6 |
(1)求证:{an-
1 |
2 |
(2)求{an}的通项公式并求前n项和Sn.
分析:(1)依题意,可得3an-1=an-1(n≥2),进一步整理可得3(an-
)=an-1-
(n≥2),从而可证{an-
}是公比为
,首项为
的等比数列;
(2)由(1)知,an=
+(
)n,利用分组求和的方法即可求得答案.
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
(2)由(1)知,an=
1 |
2 |
1 |
3 |
解答:解:(1)∵3(α+β)-αβ+1=0,
∴依题意,得3
-
=1(n≥2),
∴3an-1=an-1(n≥2),
∴3(an-
)=an-1-
(n≥2),
∴{an-
}是公比为
,首项为
-
=
的等比数列;
(2)由(1)知,an-
=
•(
)n-1=(
)n,
∴an=
+(
)n,
∴Sn=a1+a2+…+an
=(
+
)+(
+(
)2)+…+(
+(
)n)
=
+
=
-
.
∴依题意,得3
an |
an-1 |
1 |
an-1 |
∴3an-1=an-1(n≥2),
∴3(an-
1 |
2 |
1 |
2 |
∴{an-
1 |
2 |
1 |
3 |
5 |
6 |
1 |
2 |
1 |
3 |
(2)由(1)知,an-
1 |
2 |
1 |
3 |
1 |
3 |
1 |
3 |
∴an=
1 |
2 |
1 |
3 |
∴Sn=a1+a2+…+an
=(
1 |
2 |
1 |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
3 |
=
n |
2 |
| ||||
1-
|
=
n+1 |
2 |
1 |
2×3n |
点评:本题考查等比关系的确定与数列的求和,着重考查分组求和的应用,属于中档题.
练习册系列答案
相关题目