题目内容

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当yn=sin(
π
2
n)
时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范围;不存在,说明理由.
分析:(1)直接利用数列{an}是周期为3的周期数列以及an+2=λ•an+1-an可以推得(λ+1)(an+2-an+1)=0即可求常数λ的值;
(2)先利用4Sn=(an+1)2求得an-an-1=2或an=-an-1(n≥2).
①由an>0得an-an-1=2(n≥2),求出数列{an}的通项公式即可判断数列{an}是否为周期数列;
②由anan+1<0的an=-an-1(n≥2),求出数列{an}的通项公式即可判断数列{an}是否为周期数列;
(3)先由数列{an}满足an+2=-an+1-an(n∈N*),推得数列{an}以及数列{bn}是周期为3的周期数列,求出数列{bn}的前3项,即可求出数列{bn}的前n项和Sn以及数列{bn}的前n项和Sn的取值范围,即可求出对应的p、q的取值范围.
解答:解:由(1)数列{an}是周期为3的数列,
得an+3=an,且
an+2=λ an+1-an 
an+3an+2-an+1
?(λ+1)(an+2-an+1)=0,即λ=-1.

(2)当n=1时,s1=a1,4s1=(a1+1)2?a1=1,
当n≥2时,4an=4sn-4sn-1=(an+1)2-(an-1+1)2.?(an-1)2=(an-1+1)2,即an-an-1=2或an=-an-1(n≥2).
①由an>0有an-an-1=2(n≥2),则{an}为等差数列,即an=2n-1,
由于对任意的n都有an+m≠an,所以数列{an}不是周期数列.
②由anan+1<0有an=-an-1(n≥2),数列{an}为等比数列,即an=(-1)n-1
即an+2=an对任意n都成立.
即当anan+1<0时是{an}周期为2的周期数列.

(3)假设存在p,q.满足题设.
于是
an+2=-an+1-an
an+3=-an+2-an+1
?an+3=an,又bn=an+1则bn+3=bn
所以{bn}是周期为3的周期数列,所以{bn}的前3项分别为2,3,-2.
则sn=
n       n=3k
n+1     n=3k-2
n+3     n=3k-1

当n=3k时,
sn
n
=1;
当n=3k-2时,
sn
n
=1+
1
n
?1<
sn
n
≤2;
当n=3k-1时,
sn
n
=1+
3
n
?1<
sn
n
5
2

综上1≤
sn
n
5
2

为使p
sn
n
≤q恒成立,只要p≤1,q
5
2
即可.
综上,存在p≤1,q
5
2
满足题设.
点评:本题是在新定义下对数列知识的综合考查,属于数列中的难题.一般数列出大题,要么是非常容易,在第一第二大题;要么就是很难的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网