题目内容
5.如果数列{an}满足a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公比为3的等比数列,则an等于( )A. | $\frac{{3}^{n}+1}{2}$ | B. | $\frac{{3}^{n}+3}{2}$ | C. | $\frac{{3}^{n}-1}{2}$ | D. | $\frac{{3}^{n}-3}{2}$ |
分析 直接把数列a1,a2-a1,a3-a2,…,an-an-1,…的前n项求和即可得到答案.
解答 解:∵a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公比为3的等比数列
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=$\frac{1×(1-{3}^{n})}{1-3}$=$\frac{{3}^{n}-1}{2}$.
故选:C
点评 本题考查了等比数列的前n项和公式,利用累加法是解决本题的关键.考查了学生的灵活变形能力,是基础题.
练习册系列答案
相关题目
15.有以下四个命题
p1:?x0∈(-∞,0),4${\;}^{{x}_{0}}$<5${\;}^{{x}_{0}}$,
p2:在锐角三角形ABC中,若tanA>tanB,则A>B;
p3:?x∈R,cosx0≥1;
p4:?x∈R,x2-x+1>0
其中假命题是( )
p1:?x0∈(-∞,0),4${\;}^{{x}_{0}}$<5${\;}^{{x}_{0}}$,
p2:在锐角三角形ABC中,若tanA>tanB,则A>B;
p3:?x∈R,cosx0≥1;
p4:?x∈R,x2-x+1>0
其中假命题是( )
A. | p1 | B. | p2 | C. | p3 | D. | p4 |
16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+8,x≤0}\\{sinπx,x>0}\end{array}\right.$的,且f(x)-ax≥-1对任意的x恒成立,则a的取值范围是( )
A. | (-6,0] | B. | [-6,0) | C. | (-1,0) | D. | [-1,0] |
20.下列各式中,值为$\frac{1}{2}$的是( )
A. | cos2$\frac{π}{12}$-sin2$\frac{π}{12}$ | B. | $\sqrt{\frac{{1+cos\frac{π}{6}}}{2}}$ | ||
C. | sin15°cos15° | D. | $\frac{tan22.5°}{1-ta{n}^{2}22.5°}$ |
15.已知等差数列{an}的前n项和为Sn,若$\frac{a_6}{a_5}=\frac{2}{3},则\frac{{{S_{11}}}}{S_9}$=( )
A. | $\frac{22}{27}$ | B. | $\frac{2}{3}$ | C. | $\frac{8}{27}$ | D. | $\frac{11}{9}$ |