题目内容

【题目】已知 是(﹣∞,+∞)上的增函数,那么a的取值范围是(
A.[ ,3)
B.(0,3)
C.(1,3)
D.(1,+∞)

【答案】A
【解析】解:∵f(x)= 是(﹣∞,+∞)上的增函数,∴x<1时,f(x)=(3﹣a)x﹣a是增函数∴3﹣a>0,解得a<3;
x≥1时,f(x)=logax是增函数,解得a>1.
∵f(1)=loga1=0
∴x<1时,f(x)<0
∵x=1,(3﹣a)x﹣a=3﹣2a
∵x<1时,f(x)=(3﹣a)x﹣a递增
∴3﹣2a≤f(1)=0,解得a
所以 ≤a<3.
故选A.
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对对数函数的单调性与特殊点的理解,了解过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网