题目内容
【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为 ,求该四棱锥的侧面积.
【答案】
(1)
证明:∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,
∴AB⊥PA,CD⊥PD,
又AB∥CD,∴AB⊥PD,
∵PA∩PD=P,∴AB⊥平面PAD,
∵AB平面PAB,∴平面PAB⊥平面PAD.
(2)
解:设PA=PD=AB=DC=a,取AD中点O,连结PO,
∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,
∴PO⊥底面ABCD,且AD= = ,PO= ,
∵四棱锥P﹣ABCD的体积为 ,
∴VP﹣ABCD=
= = = =8,
解得a=2,∴PA=PD=AB=DC=2,AD=BC=2 ,PO= ,
∴PB=PC= =2 ,
∴该四棱锥的侧面积:
S侧=S△PAD+S△PAB+S△PDC+S△PBC
= + + +
=
=6+2 .
【解析】(1.)推导出AB⊥PA,CD⊥PD,从而AB⊥PD,进而AB⊥平面PAD,由此能证明平面PAB⊥平面PAD.
(2.)设PA=PD=AB=DC=a,取AD中点O,连结PO,则PO⊥底面ABCD,且AD= ,PO= ,由四棱锥P﹣ABCD的体积为 ,求出a=2,由此能求出该四棱锥的侧面积.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.
练习册系列答案
相关题目