题目内容
【题目】已知函数, .
(1)分别求函数与在区间上的极值;
(2)求证:对任意, .
【答案】(Ⅰ)在上有极小值,无极大值; 在上有极大值,无极小值;(Ⅱ)见解析.
【解析】(Ⅰ)由题意,利用导数进行求解,首先求出函数极值点,再判断极值点两侧的单调性,从而得出是否为极大值点,还是极小值点,问题即可得解;(Ⅱ)由(Ⅰ)知,可将分为和两段进行证明,在区间上可比较两个函数的极小值与极大值即,在区间上可考虑将两函数作差构造新函数,再通过判断新函数的单调性和最值,从而问题可得证.
试题解析:(Ⅰ) , ,
故在和上递减,在上递增,
在上有极小值,无极大值; , ,
故在上递增,在上递减,
在上有极大值,无极小值;
(Ⅱ)由(Ⅰ)知,当时, , ,故;
当时, ,令,则,
故在上递增,在上递减, , ;
综上,对任意, .
练习册系列答案
相关题目
【题目】为调查某地人群年龄与高血压的关系,用简单随机抽样方法从该地区年龄在20~60岁的人群中抽取200人测量血压,结果如下:
高血压 | 非高血压 | 总计 | |
年龄20到39岁 | 12 | 100 | |
年龄40到60岁 | 52 | 100 | |
总计 | 60 | 200 |
(1)计算表中的、、值;是否有99%的把握认为高血压与年龄有关?并说明理由.
(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求恰好一名患者年龄在20到39岁的概率.
附参考公式及参考数据: =
P(k2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |