题目内容

如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点,
(Ⅰ)设点P分有向线段所成的比为λ,证明:
(Ⅱ)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程。

解:(Ⅰ)依题意,可设直线AB的方程为y=kx+m,
代入抛物线方程, ①
设A、B两点的坐标分别是
则x1、x2是方程①的两根,所以
由点P(0,m)分有向线段所成的比为λ,
,即
又点Q是点P关于原点的对称点,故点Q的坐标是(0,-m),
从而




所以
(Ⅱ)由得点A、B的坐标分别是(6,9)、(-4,4),

所以抛物线在点A处切线的斜率为
设圆C的方程是

解之得
所以圆C的方程是,即

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网