题目内容

精英家教网如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.
(I)设点P分有向线段
AB
所成的比为λ,证明:
QP
⊥(
QA
QB
)

(Ⅱ)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
分析:(Ⅰ)依题意,可设直线AB的方程为y=kx+m,代入抛物线方程x2=4y得x2-4kx-4m=0.设A、B两点的坐标分别是(x1,y1)、(x2,y2),x1x2=-4m.由点P(0,m)分有向线段
AB
所成的比为λ,得
x1x2
1+λ
=0,即λ=-
x1
x2
.由此可以推出
QP
⊥(
QA
QB
)

(Ⅱ)由
x-2y+12=0
x2=4y
得点A、B的坐标分别是(6,9)、(-4,4).设圆C的方程是(x-a)2+(y-b)2=r2,则
b-9
a-b
=-
1
3
(a-6)2+(b-9)2=(a+4)2+(b-4)2.
解得a=-
3
2
,b=
23
2
r2=(a+4)2+(b-4)2=
125
2
.所以圆C的方程是x2+y2+3x-23y+72=0.
解答:解:(Ⅰ)依题意,可设直线AB的方程为y=kx+m,代入抛物线方程x2=4y得x2-4kx-4m=0.①
设A、B两点的坐标分别是(x1,y1)、(x2,y2),则x1、x2是方程①的两根.
所以x1x2=-4m.
由点P(0,m)分有向线段
AB
所成的比为λ,
x1x2
1+λ
=0,即λ=-
x1
x2

又点Q是点P关于原点的对称点,
故点Q的坐标是(0,-m),从而
QP
=(0,2m)
.
QA
QB
=(x1y1+m)-λ(x2y2+m)=(x1x2y1y2+(1-λ)m)
QP
•(
QA
QB
)=2m[y1y2+(1-λ)m]
=2m[
x
2
1
4
+
x1
x2
x
2
2
4
+(1+
x1
x2
)m]=2m(x1+x2)•
x1x2+4m
4x2
=2m(x1+x2)•
-4m+4m
4x2
=0

所以
QP
⊥(
QA
QB
)

(Ⅱ)由
x-2y+12=0
x2=4y
得点A、B的坐标分别是(6,9)、(-4,4).
由x2=y得y=
1
4
x2,y′=
1
2
x

所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3
设圆C的方程是(x-a)2+(y-b)2=r2
b-9
a-b
=-
1
3
(a-6)2+(b-9)2=(a+4)2+(b-4)2.

解之得a=-
3
2
,b=
23
2
r2=(a+4)2+(b-4)2=
125
2

所以圆C的方程是(x+
3
2
)2+(y-
23
2
) 2=
125
2

即x2+y2+3x-23y+72=0.
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网