题目内容
【题目】已知点P( ,1),Q(cosx,sinx),O为坐标原点,函数f(x)= .
(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.
【答案】解:(Ⅰ)f(x)= =( ,1)( ﹣cosx ,1﹣sinx) =﹣ cosx﹣sinx+4=﹣2sin(x+ )+4,
f(x)的最小正周期T= =π;
(Ⅱ)∵f(A)=4,∴A= ,
又∵BC=3,
∴9=(b+c)2﹣bc.
∵bc≤ ,
∴ ,
∴b+c≤2 ,当且仅当b=c取等号,
∴三角形周长最大值为3+2
【解析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f(x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.
练习册系列答案
相关题目