题目内容

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为梯形,AD∥BC,BC=6,PA=AD=CD=2,E为BC上一点且BE= BC,PB⊥AE.

(1)求证:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.

【答案】
(1)证明:∵PA⊥平面ABCD,AE平面ABCD,

∴PA⊥AE,

又∵PB⊥AE,PB∩PA=P,

∴AE⊥平面PAB,又∵AB平面PAB,

∴AE⊥AB.

又∵PA⊥AB,PA∩AE=A,

∴AB⊥平面PAE,

又∵PE平面PAE,

∴AB⊥PE.


(2)解:以A为坐标原点,建立如图所示的空间直角坐标系A﹣xyz,

则B(2 ,0,0),P(0,0,2),C(﹣ ,3,0),D(﹣ ,1,0),

=(﹣3 ,3,0), =(﹣ ,3,﹣2), =(0,2,0).

设平面PBC的一个法向量 =(x,y,z),

,令x=1,得 =(1, ).

同理可求平面PCD的一个法向量 =(2,0,﹣ ).

∴cos >= = =﹣

∵二面角B﹣PC﹣D为钝二面角,

∴二面角B﹣PC﹣D的余弦值为﹣


【解析】(1)推导出PA⊥AE,AE⊥AB.由此能证明AB⊥PE.(2)以A为坐标原点,建立空间直角坐标系A﹣xyz,利用向量法能求出二面角B﹣PC﹣D的余弦值.
【考点精析】根据题目的已知条件,利用棱锥的结构特征的相关知识可以得到问题的答案,需要掌握侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网