题目内容
【题目】已知直线:,若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:
①;②;③;④.
其中直线的“绝对曲线”的条数为( )
A. B. C. D.
【答案】C
【解析】
由y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).
对于①,y=﹣2|x﹣1|,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l的“绝对曲线”;
对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,
所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.
所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;
对于③,将y=ax+1﹣a代入x2+3y2=4,
得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.
x1+x2=, x1x2=.
若直线l被椭圆截得的线段长度是|a|,
则
化简得.
令f(a)=.
f(1),f(3).
所以函数f(a)在(1,3)上存在零点,即方程有根.
而直线过椭圆上的定点(1,1),当a∈(1,3)时满足直线与椭圆相交.
故曲线x2+3y2=4是直线的“绝对曲线”.
对于④将y=ax+1﹣a代入.
把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,
∴x1+x2=,x1x2=.
若直线l被椭圆截得的弦长是|a|,
则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2)
化为a6-16a2+16a-16=0,
令f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.
∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a∈(1,2)时,直线满足条件,即此函数的图象是“绝对曲线”.
综上可知:能满足题意的曲线有②③④.
故选:C.
【题目】省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
城 | 城 | 城 | |
优(个) | 28 | ||
良(个) | 32 | 30 |
已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;
(2)已知, ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.