题目内容

对于数列,把作为新数列的第一项,把)作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.
(1)写出的所有可能值;
(2)若生成数列满足,求数列的通项公式;
(3)证明:对于给定的的所有可能值组成的集合为

(1)(2)(3)详见解析.

解析试题分析:(1)列举出数列所有可能情况,共种,分别计算和值为,本题目的初步感观生成数列(2)已知和项解析式,则可利用求通项. 当时,,而当且仅当时,才成立.所以(3)本题实际是对(1)的推广.证明的实质是确定集合的个数及其表示形式.首先集合的个数最多有种情形,而每一种的值都不一样,所以个数为种情形,这是本题的难点,利用同一法证明. 确定集合的表示形式,关键在于说明分子为奇数.由得分子必是奇数,奇数个数由范围确定.
试题解析:解:(1)由已知,

由于
可能值为.                              3分
(2)∵
时,
时,
,                         5分
的生成数列,


在以上各种组合中,
当且仅当时,才成立.
.                          8分
(3)共有种情形.
,即
,分子必是奇数,
满足条件的奇数共有个.            10分
设数列与数列为两个生成数列,数列的前项和为,数列的前项和为,从第二项开始比较两个数列,设第一个不相等的项为第项.
由于,不妨设


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网